Computing in Cantor's Paradise with λ ZFC

نویسندگان

  • Neil Toronto
  • Jay McCarthy
چکیده

Applied mathematicians increasingly use computers to answer mathematical questions. We want to provide them domain-specific languages. The languages should have exact meanings and computational meanings. Some proof assistants can encode exact mathematics and extract programs, but formalizing the required theorems can take years. As an alternative, we develop λZFC, a lambda calculus that contains infinite sets as values, in which to express exact mathematics and gradually change infinite calculations to computable ones. We define it as a conservative extension of set theory, and prove that most contemporary theorems apply directly to λZFC terms. We demonstrate λZFC’s expressiveness by coding up the real numbers, arithmetic and limits. We demonstrate that it makes deriving computational meaning easier by defining a monad in it for expressing limits, and using standard topological theorems to derive a computable replacement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relational Set Theory

This article presents a relational formalization of axiomatic set theory, including socalled ZFC and the anti-foundation axiom (AFA) due to P. Aczel. The relational framework of set theory provides a general methodology for the fundamental study on computer and information sciences such as theory of graph transformation, situation semantics and analysis of knowledge dynamics in distributed syst...

متن کامل

The Erdös-rado Arrow for Singular

We prove that if cf(λ) > א0 and 2 cf(λ) < λ then λ → (λ, ω + 1) in ZFC

متن کامل

Every (λ, Κ)-regular Ultrafilter Is (λ, Κ)-regular

We prove the following: Theorem A. If D is a (λ+, κ)-regular ultrafilter, then either (a) D is (λ, κ)-regular, or (b) the cofinality of the linear order ∏ D〈λ, <〉 is cf κ, and D is (λ, κ′)-regular for all κ′ < κ. Corollary B. Suppose that κ is singular, κ > λ and either λ is regular, or cf κ < cf λ. Then every (λ+n, κ)-regular ultrafilter is (λ, κ)-regular. We also discuss some consequences and...

متن کامل

Strong tree properties for two successive cardinals

An inaccessible cardinal κ is supercompact when (κ, λ)-ITP holds for all λ ≥ κ. We prove that if there is a model of ZFC with two supercompact cardinals, then there is a model of ZFC where simultaneously (א2, μ)-ITP and (א3, μ′)-ITP hold, for all μ ≥ א2 and μ′ ≥ א3.

متن کامل

Strolling through Paradise

With each of the classical tree–like forcings adjoining a new real, one can associate a σ– ideal on the reals in a natural way. For example, the ideal of Marczewski null sets s corresponds to Sacks forcing S, while the ideal of nowhere Ramsey sets r corresponds to Mathias forcing R. We show (in ZFC) that none of these ideals is included in any of the others. We also discuss Mycielski’s ideal P2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012